Matrix factorizations and representations of quivers II: Type ADE case
نویسندگان
چکیده
منابع مشابه
Matrix Factorizations and Representations of Quivers Ii : Type Ade Case
We study a triangulated category of graded matrix factorizations for a polynomial of type ADE. We show that it is equivalent to the derived category of finitely generated modules over the path algebra of the corresponding Dynkin quiver. Also, we discuss a special stability condition for the triangulated category in the sense of T. Bridgeland, which is naturally defined by the grading.
متن کاملYitp-05-65 Rims-1521 Matrix Factorizations and Representations of Quivers Ii: Type Ade Case
We study a triangulated category of graded matrix factorizations for a polynomial of type ADE. We show that it is equivalent to the derived category of finitely generated modules over the path algebra of the corresponding Dynkin quiver. Also, we discuss a special stability condition for the triangulated category in the sense of T. Bridgeland, which is naturally defined by the grading.
متن کاملMatrix Factorizations and Representations of Quivers I
This paper introduces a mathematical definition of the category of D-branes in Landau-Ginzburg orbifolds in terms of A∞-categories. Our categories coincide with the categories of (gradable) matrix factorizations for quasi-homogeneous polynomials. After setting up the necessary definitions, we prove that our category for the polynomial x is equivalent to the derived category of representations o...
متن کاملA Universal Investigation of $n$-representations of $n$-quivers
noindent We have two goals in this paper. First, we investigate and construct cofree coalgebras over $n$-representations of quivers, limits and colimits of $n$-representations of quivers, and limits and colimits of coalgebras in the monoidal categories of $n$-representations of quivers. Second, for any given quivers $mathit{Q}_1$,$mathit{Q}_2$,..., $mathit{Q}_n$, we construct a new quiver $math...
متن کاملFactorizations and Representations of Binary Polynomial Recurrences by Matrix Methods
In this paper we derive factorizations and representations of a polynomial analogue of an arbitrary binary sequence by matrix methods. It generalizes various results on Fibonacci, Lucas, Chebyshev and MorganVoyce polynomials. 1. Introduction In [10], the divisibility properties of the Fibonacci polynomial sequence ffn (x)g was studied. The Fibonacci polynomial sequence is de ned by the recursi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2007
ISSN: 0001-8708
DOI: 10.1016/j.aim.2006.08.005